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Shifting in Major League Baseball 

Introduction 

“It’s not hard to be romantic about baseball,” is an often-quoted line from 2011 movie Moneyball, 

and it is a statement that is simply true. There is something in the air at a ball field, from the most highly 

funded stadium to the overgrown outfield of a small town’s field, something that makes everything feel a 

little simpler, a little more like childhood and happiness. In the rush of a game, there is nothing that 

matters but the ball and the base, and perhaps the scoreboard. But baseball is also much more than that, it 

is a complex game with rules that require both instinct and intellect, and an ability to adapt to any 

situation that arises. With this idea comes the ever-changing strategies of the game, from the beginnings 

of batting statistics in 1917 to the development of statistical recruiting in 2003 (Lee, 2018). One of the 

most recent developments in fielding, however, is the concept of “shifting,” or the movement of the 

majority infielders to one side of the field based on where each individual batter is most probable to hit.  

Shifting has only become popular in the last decade, first being used to remarkable success by the 

Tampa Bay Rays in their 2010 season. Much like the statistical hirings developed in 2003 by the Oakland 

A’s, shifting was a strategy built because of budget. The Tampa Bay Rays in 2010 needed a way to win 

games on a budget much smaller than many of their competitors, and from this need came the idea of 

moving fielders to only the spots where a batter was likely to hit – why use a valuable player in a place 

where they are improbable to be useful when there is so much more to gain in having them placed 

somewhere else (Heyen, 2020). And it worked – according to Bill Heyen of Sporting News, between 2009 

and 2011, opponents of the Rays had hits 1.2% less than the league average. Since the Rays first success 

using this strategy, the form has only grown more popular, with every team in Major League Baseball 

(MLB) using it in the 2021 season and has become a controversial topic amongst baseball fans due to this. 

The initial goal of this paper was to investigate certain aspects of the claims made against 

shifting, and demonstrating the statistical realities of the effect of shifting on teams based on win/loss 
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proportion and funding, as well as it’s effect on individual batters. However, when progressing in the 

paper, I have found other aspects which lead me to investigate the best model of MLB ranking based on 

win/loss proportion vs the shifting proportion of teams in 2019. To do this, I plan to run various kinds of 

regressions on the total data of the 30 MLB teams, looking specifically at their ranking and at the 

proportion of plate appearances they shifted on. To collect the data for this modeling exploration, I will 

use the information collected by Baseball Savant, which is a database specifically made by the MLB and 

which stores vast amounts of data about the MLB teams. Too, I will be sourcing my data from the 2019 

season, as at the time of writing it is the most recently completed full season, and therefore the most truly 

accurate and relevant data available. In total, my goal is to better understand the relationship between the 

proportion of shifting and the win/loss rates of the various major league teams. 

Data Collection and Initial Findings 

 As previously stated, to get data for this 

project, I used sites such as Baseball Savant and 

Baseball Reference to collect information on teams 

ranking and shift rate. Information on the payroll – the 

amount of money the team paid to its players over the 

course of the season – of specific teams was collected 

from SpoTrac and used to operationalize the funding of 

teams. All this data has been compiled in a variety of 

tables, which are displayed below. 

Table 1 shows the top ten and bottom ten ranked teams 

of the MLB in 2019 and the percentage of plays they 

shifted on out of the plate appearances in the season. 

We can see from this table that the top two teams in 2019, the Astros and the Dodgers, have the highest 

shift per play (SpP) percentage of these twenty 2019 teams at 49.5% and 50.6%. Meanwhile, in the 

TEAM NAME RANKING SHIFT PER 

PLAY (%) 

ASTROS  1 49.5 

DODGERS  2 50.6 

YANKEES  3 36 

TWINS  4 35.5 

ATHLETICS  5 19.2 

BRAVES  6 14.9 

RAYS  7 37.2 

INDIANS  8 14 

NATIONALS  9 14.3 

CARDINALS  10 15.8 

ANGELS  21 16.8 

ROCKIES  22 18.7 

PADRES  23 16.7 

PIRATES  24 30.2 

MARINERS  25 19.1 

BLUE JAYS  26 28.5 

ROYALS  27 17.9 

MARLINS  28 36.4 

ORIOLES  29 42.8 

TIGERS  30 29.3 

Table 1 
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bottom half of the ranking, teams like the Orioles managed to place in the top 10 highest shift rates while 

maintaining a spot in the bottom 10 in terms of win/loss rate. The overall mixed use of shifting leads to no 

apparent correlations between the shift and ranking just by looking at the data. To better display this data 

however, I went through the process of placing the data into graphs.  

Due to the generally decreasing SpP rates in the top ten teams, I suspected that the graph would 

follow a linear trend. To be able to prove linearity, we must calculate r using the formula:  

𝑟 =
1

𝑛−1
∑(

𝑥𝑖−�̅�

𝑆𝑥
)(
𝑦𝑖−�̅�

𝑆𝑦
) 

with 

�̅� =
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

10
=
11

2
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√
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31

2
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2
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31

2
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31

2
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31

2
)
2
+
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31

2
)
2

30
= 6.01  

�̅� =
49.5 + 50.6 + 36 + 35.5 + 19.2 + 14.9 + 37.2 + 14 + 14.3 + 15.8

10
=  28.7 

𝑠𝑦 =

 √
(49.5−25.6)2+(50.6−25.6)2+(36−25.6)2+(35.5−25.6)2+(19.2−25.6)2+(14.9−25.6)2+(37.2−25.6)2+(14−25.6)2+(14.3−25.6)2+(15.8−25.6)2

30
  

8.26  

Resulting in a final equation of: 

𝑟 =
1

10−1
( ( (

1−5.5

6.01
) (

49.5−28.7

8.26
) )  + ((

2−5.5

6.01
) (

50.6−28.7

8.26
)) + ( (

3−5.5

6.01
) (

36−28.7

8.26
)) +

( (
4−5.5

6.01
) (

35.5−28.7

8.26
)) + ( (

5−5.5

6.01
) (

19.2−28.7

8.26
)) + ( (

6−5.5

6.01
) (

14.9−28.7

8.26
)) + ( (

7−5.5

6.01
) (

37.2−28.7

8.26
)) +

( (
8−5.5

6.01
) (

14−28.7

8.26
)) + ( (

9−5.5

6.01
) (

14.3−28.7

8.26
)) + ( (

10−5.5

6.01
) (

15.8−28.7

8.26
)) ) =  −0.746   
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With this r value being above |0.7| 

there is a strong negative correlation 

between rank and shifting rate in the top ten 

MLB teams. Because of this, I put the data 

into a scatterplot in Graph 1, which further 

revealed a negative correlation trend, and 

when looking at the graph we can see what 

looks to be a linear trend. With this 

hypothesis of linearity, I moved onto a 

residuals plot, displayed in Graph 2, where 

we can see an approximately random 

scatter, which further implicates the 

linearity of the data correlation. Because of 

all these factors, running a linear regression 

is viable, and results in the equation of 𝑦 =

50.92 − 4.04𝑥. This equation results in an 

𝑟2 value of 0.68, which means that the 

least-squared regression line (LSRL) 

explains 68% of variation in y or SpP.  

A similar process was gone through with the bottom ten teams in the MLB, with the r value 

calculations being largely similar, though the workings aren’t shown in full here. With this, we see an r value 

of 0.7, equating to a strong positive correlation. I again then put the data into a scatterplot in Graph 3, where 

there is what appears to be a positive linear trend. When this is transferred to a residual plot in Graph 4, the 

trend maintains its relevance, as the plot is randomly scattered, and therefore a linear regression is possible. 

Graph 1 

Graph 2 
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When the regression is run, the result is 

𝑦 = −28.7 + 2.13𝑥 and have a 𝑟2 value 

of 0.49 and is therefore only accounting 

for 49% of variation.  

      These two sets of data 

interestingly are opposite to one in terms 

of correlation direction, despite coming 

from the same overall population, though 

on different ends. I also noticed that the 

10th and 21st ranked teams have SpP rates 

which are only separated by 1%, and if 

graphed on the same graph, would be the 

same distance to the x-axis from an axis 

of symmetry for a quadratic function. 

Noticing this phenomenon and having 

access to the intermediate ten data points 

which would make this a complete data 

set, I chose to expand my initial plan to 

create a model to understand the total relationship between shifting and the win/loss rate of teams in the 2019 

season.  

 

Graph 3 

Graph 4 
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Analysis & Mathematics 

 The full set of data, displayed in 

Table 2, shows the team’s name, their 

win/loss proportion, and the teams 

shifting proportion. To model this data, I 

first plotted a scatterplot in order to look 

at the initial shape of the data without 

having run any regressions or residuals in 

order to make an initial prediction or 

interpretation. This is displayed in Graph 

5, where we can see what appears to be an 

approximately curved line. At the very 

least the association is not linear, though 

it’s unclear what the model may end up 

being.  

 

 

 

 

 

 

 

TEAM NAME WIN/LOSS 

RATE 

SHIFT 

PROPORTION 

ASTROS 0.66 0.495 

DODGERS 0.654 0.506 

YANKEES 0.636 0.36 

TWINS 0.623 0.355 

ATHLETICS 0.599 0.192 

BRAVES 0.599 0.149 

RAYS 0.593 0.372 

INDIANS 0.574 0.14 

NATIONALS 0.574 0.143 

CARDINALS 0.562 0.158 

BREWERS 0.549 0.341 

METS 0.531 0.141 

DIAMONDBACKS 0.525 0.325 

RED SOX 0.519 0.184 

CUBS 0.519 0.127 

PHILLIES 0.5 0.171 

RANGERS 0.481 0.214 

GIANTS 0.475 0.254 

REDS 0.463 0.27 

WHITE SOX 0.447 0.223 

ANGELS 0.444 0.168 

ROCKIES 0.438 0.187 

PADRES 0.432 0.167 

PIRATES 0.426 0.302 

MARINERS 0.42 0.191 

BLUE JAYS 0.414 0.285 

ROYALS 0.364 0.179 

MARLINS 0.352 0.364 

ORIOLES 0.333 0.428 

TIGERS 0.292 0.293 

Table 2 

Graph 5 
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To look at what 

potential model it could be, I 

began to run regressions of 

various kinds, looking for the 

model with the highest r 

value. These various 

regressions, their modeled 

formula, r values, and 𝑟2 

values are all displayed in 

Table 3. As one can see demonstrated in the table, the r value is highest for the power model graphs, with 

the highest of those being the quartic model at an r value of 0.744. This means that using the quartic 

model, there would be an estimated 74.4% correlation, and because of the 𝑟2 value of 0.553, the model 

accounts for  55.3% of variation.  

Because the quartic model only has an r value of 0.738, which, while being a strong correlation, 

is a fairly low correlation in comparison to the possible r values if we continue to increase the polynomial 

order. To attempt to find the regression models, as the graphing calculator used with the initial regressions 

does not go past a quartic power model, I first attempted to use systems of equations and matrices and 

then calculate the r and 𝑟2.  

 

 

 

 

Table 3 

 

REGRESSION 

NAME 

EQUATION 𝒓 𝒓𝟐 

LINEAR 𝑦 = 0.172 + 0.169𝑥 0.153 0.023 

QUADRATIC 𝑦 = 6.64𝑥2 − 6.34𝑥 + 1.7 0.652 0.426 

CUBIC 𝑦 = 35.8𝑥3 − 44.9𝑥2 + 17.7𝑥 − 1.91 0.738 0.545 

QUARTIC 𝑦 = 95.2𝑥4 − 148𝑥3 + 84.6𝑥2 − 22𝑥 + 2.52 0.744 0.553 

POWER 𝑦 = 0.238𝑥0.0171  0.00598 0.0000358 

EXPONENTIAL 𝑦 = 0.205(1.33)𝑥  0.0687 0.00472 

LOGARITHMIC 𝑦 = 0.288 + 0.0441 (log𝑥) 0.0848 0.0072 
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To test what powers might work best, I can work with systems of equations and matrices in order 

to create models and then calculate the r and 𝑟2 value of the model. The first system of equations for the 

model 𝑦 = 𝑎𝑥5 + 𝑏𝑥4 + 𝑐𝑥3 + 𝑑𝑥2 + 𝑒𝑥 + 𝑓 is displayed below. 

0.495 = 𝑎(. 66)5 + 𝑏(. 66)4 + 𝑐(. 66)3 + 𝑑(. 66)2 + 𝑒(. 66) + 𝑓 

0.506 = 𝑎(. 654)5 + 𝑏(. 654)4 + 𝑐(. 654)3 + 𝑑(. 654)2 + 𝑒(. 654) + 𝑓 

0.325 = 𝑎(. 525)5 + 𝑏(. 525)4 + 𝑐(. 525)3 + 𝑑(. 525)2 + 𝑒(. 525) + 𝑓 

0.127 = 𝑎(. 519)5 + 𝑏(. 519)4 + 𝑐(. 519)3 + 𝑑(. 525)2 + 𝑒(. 525) + 𝑓 

0.428 = 𝑎(. 333)5 + 𝑏(. 333)4 + 𝑐(. 333)3 + 𝑑(. 333)2 + 𝑒(. 333) + 𝑓 

0.364 = 𝑎(. 352)5 + 𝑏(. 352)4 + 𝑐(. 352)3 + 𝑑(. 352)2 + 𝑒(. 352) + 𝑓 

I then reduced the equations, which are also displayed below.  

0.495 = 0.125𝑎 + 0.19𝑏 + 0.287𝑐 + 0.436𝑑 + 0.66𝑒 + 𝑓 

0.506 = 0.12𝑎 + 0.183𝑏 + 0.28𝑐 + 0.428𝑑 + 0.654𝑒 + 𝑓 

0.325 = 0.0399𝑎 + 0.76𝑏 + 0.145𝑐 + 0.276𝑑 + 0.525𝑒 + 𝑓 

0.127 = 0.0377𝑎 + 0.0726𝑏 + 0.14𝑐 + 0.269𝑑 + 0.519𝑒 + 𝑓 

0.428 = 0.0041𝑎 + 0.0122𝑏 + 0.0369𝑐 + 0.111𝑑 + 0.333𝑒 + 𝑓 

0.364 = 0.0054𝑎 + 0.0154𝑏 + 0.0436𝑐 + 0.124𝑑 + 0.352𝑒 + 𝑓 
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From here, the new coefficients must be inserted into a matrix, where the coefficients of each system are 

placed in order, then multiplied by a second matrix of the variables, which are equal the solutions to the 

systems. This is all displayed in the matrix below.  

0.125 0.19 0.287 0.436 0.66 1
0.12 0.183 0.28 0.428 0.654 1
0.0399 0.76 0.145 0.27 0.525 1
0.0377 0.0726 0.14 0.269 0.519 1
0.0041 0.0122 0.0369 0.111 0.333 1
0.0054 0.0154 0.0436 0.124 0.352 1

  × 

𝑎
𝑏
𝑐
𝑑
𝑒
𝑓

=

0.495
0.506
0.325
0.127
0.428
0.364

 

This is all then calculated using the matrix function in a graphing calculator, coming to the following 

results for each variables posited solution; 𝑎 = −648, 𝑏 = 626, 𝑐 = 1040, 𝑑 = −1501, 𝑒 = 595, 𝑓 =

−74.7. Thus, the regression line for a power model with the highest power of 5 would be:  

𝑦 = −58.6𝑥5 + 30.3𝑥4 + 91.2𝑥3 − 89.6𝑥2 + 24.7𝑥 − 1.33 

To finish out this problem, I must calculate the r and 𝑟2 values of the equation. To calculate r the 

following equation must be employed: 

 𝑟 =
1

𝑛−1
∑(

𝑥𝑖−�̅�

𝑆𝑥
)(
𝑦𝑖−�̅�

𝑆𝑦
) 

with 

�̅� =
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30

30
= 15.5  

𝑠𝑥 =

√
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+
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+
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2
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+(30−

31

2
)
2

30

=8.66  

�̅� =
49.5+50.6+36+35.5+19.2+14.9+37.2+14+14.3+15.8+34.1+14.1+32.5+18.4+12.7+
17.1+21.4+25.4+27+22.3+16.8+18.7+16.7+30.2+19.1+28.5+17.9+36.4+42.8+29.3

30
= 25.6  
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𝑠𝑦 =

√

(49.5−25.6)2+(50.6−25.6)2+(36−25.6)2+(35.5−25.6)2+(19.2−25.6)2+(14.9−25.6)2+(37.2−25.6)2+(14−25.6)2+(14.3−25.6)2+
(15.8−25.6)2+(34.1−25.6)2+(14.1−25.6)2+(32.5−25.6)2+(18.4−25.6)2+(12.7−25.6)2+(17.1−25.6)2+(21.4−25.6)2+(25.4−25.6)2+
(27−25.6)2+(22.3−25.6)2+(16.8−25.6)2+(18.7−25.6)2+(16.7−25.6)2+(30.2−25.6)2+(19.1−25.6)2+(28.5−25.6)2+(17.9−25.6)2+

(36.4−25.6)2+(42.8−25.6)2+(29.3−25.6)2

30
  

= 10.6  

Which gives us a final equation of: 

𝑟 =
1

30−1
 ( ( (

1−15.5

8.66
) (

49.5−25.6

10.6
) )  + ((

2−15.5

8.66
) (

50.6−25.6

10.6
)) + ( (

3−15.5

8.66
) (

36−25.6

10.6
)) +

( (
4−15.5

8.66
) (

35.5−25.6

10.6
)) + ( (

5−15.5

8.66
) (

19.2−25.6

10.6
)) + ( (

6−15.5

8.66
) (

14.9−25.6

10.6
)) + ( (

7−15.5

8.66
) (

37.2−25.6

10.6
)) +

( (
8−15.5

8.66
) (

14−25.6

10.6
)) + ( (

9−15.5

8.66
) (

14.3−25.6

10.6
)) + ( (

10−15.5

8.66
) (

15.8−25.6

10.6
)) + ( (

11−15.5

8.66
) (

34.1−25.6

10.6
)) +

((
12−15.5

8.66
) (

14.1−15.5

10.6
)) + ((

13−15.5

8.66
) (

32.5−25.6

10.6
)) + ((

14−15.5

8.66
) (

18.4−25.6

10.6
)) + ((

15−15.5

8.66
) (

12.7−25.6

10.6
)) +

((
16−15.5

8.66
) (

17.1−25.6

10.6
)) + ((

17−15.5

8.66
) (

21.4−25.6

10.6
)) + ((

18−15.5

8.66
) (

25.4−25.6

10.6
)) + ((

19−15.5

8.66
) (

27−25.6

10.6
)) +

((
20−15.5

8.66
) (

22.3−25.6

10.6
)) + ((

21−15.5

8.66
) (

16.8−25.6

10.6
)) + ((

22−15.5

8.66
) (

18.7−25.6

10.6
)) + ((

23−15.5

8.66
) (

16.7−25.6

10.6
)) +

 ((
24−15.5

8.66
) (

30.2−25.6

10.6
)) + ((

25−15.5

8.66
) (

19.1−25.6

10.6
)) + ((

26−15.5

8.66
) (

28.5−25.6

10.6
)) + ((

27−15.5

8.66
) (

17.9−25.6

10.6
)) +

 ((
28−15.5

8.66
) (

36.6−25.6

10.6
)) + ((

29−15.5

8.66
) (

42.8−25.6

10.6
)) + ((

30−15.5

8.66
) (

29.3−25.6

10.6
)))  

𝑟 = −0.193 

 As you can see, the r value for the model generated using this method is incredibly low, and in no 

frame of mind would be seen as a valid way to model our data. This at first, confused me as I had checked 

over my work countless times. However, upon closer observation, this model and methodologies flaws 

become clear. To create this model, and any model like it, you must create six-variable systems of 

equations, which requires you to input six points of data to form said equation. The issue lies here, when 
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dealing with a sample of 30 – much larger than the available six points of data. Because of this, it is 

impossible to get a true accurate representation of the full sample being modeled after; my model used 

data points from both the highest, middling, and lowest ranking teams, which should theoretically offer 

the widest range of data, and still it resulted in an r value of only |0.193|. Clearly, this systems of 

equations and matrices method is not viable for a data set as large as this.  

 Due to this, I chose to instead use an online 

calculator, which both uses the entirety of the data 

set, and removes chances of deviation through 

rounding and other factors which are prevalent with 

hand-done math. The results of these regressions - 

from a newly calculated power 5 up to power 11 – 

are displayed in Table 4 below. As we look at the 

table, we can see that up to 𝑥10 the r value is 

steadily increasing, though it is beginning to level out as 

we approach 𝑥10 with only a 0.001 difference 

between the r values of 𝑥8 and𝑥9, and a 0.003 

difference between 𝑥9 and 𝑥10. However, after the 

10th power, the r value drops significantly, with over 

0.021 of a difference between the r value of 𝑥10 and 𝑥11.  

Through this, we can conclude that the best fitting model for the overall relationship between the 

ranking of win/loss and the SpP of plate appearances shifted on for all 30 MLB teams in the 2019 season 

is the 10th power parabolic model, specifically:  

𝑦 = −0.0000000015𝑥10 + 0.000000230𝑥9 − 0.0000152𝑥8 + 0.000570𝑥7 − 0.0134𝑥6 + 0.205𝑥5

− 2.04𝑥4 + 12.8𝑥3 − 45.7𝑥2 + 72.6𝑥 + 11.7 

Table 4 

POWER EQUATION 𝒓 𝒓𝟐 

5 𝑦 = −0.0000317𝑥5 + 0.003180𝑥4 − 0.117𝑥3 + 2𝑥2 − 16𝑥

+ 68.7 

0.746 0.558 

6 𝑦 = −0.00000606𝑥6 + 0.000532𝑥5 − 0.0168𝑥4 + 0.221𝑥3

− 0.734𝑥2 − 6.62𝑥 − 59.5 

0.756 0.572 

7 𝑦 = −0.000000146𝑥7 + 0.00000973𝑥6 − 0.000191𝑥4

+ 0.0465𝑥3 + 0.305𝑥2 − 9.37𝑥 − 61.7 

0.757 0.573 

8 𝑦 = −0.000000206𝑥8 + 0.0000254𝑥7 − 0.00129𝑥6 + 0.539𝑥5

− 0.539𝑥4 + 4.72𝑥3 − 21.4𝑥2 + 36.9𝑥 − 30.2 

0.786 0.618 

9 𝑦 = −0.0000000043𝑥9 + 0.000000393𝑥8 − 0.00000975𝑥7

− 0.000164𝑥6 + 0.0134𝑥5 − 0.291𝑥4 + 3.03𝑥3

− 15.02𝑥2 + 25.6𝑥 + 36.9 

0.787 0.619 

10 𝑦 = −0.0000000015𝑥10 + 0.000000230𝑥9 − 0.0000152𝑥8

+ 0.000570𝑥7 − 0.0134𝑥6 + 0.205𝑥5 − 2.04𝑥4

+ 12.8𝑥3 − 45.7𝑥2 + 72.6𝑥 + 11.7 

0.79 0.625 

11 𝑦 = −0.0000000002𝑥11 + 0.00000000307𝑥10 − 0.00000216𝑥9

+ 0.0000858𝑥8 − 0.00212𝑥7 + 0.0335𝑥6

− 0.334𝑥5 + 1.99𝑥4 − 6.04𝑥3 + 5.05𝑥2 + 4.09𝑥

+ 45.2 

0.769 0.591 
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To look more closely at this, I have 

graphed the model over the scatterplot in 

Graph 6 and removed the points on Graph 7.  

Overall, the model appears to fit the data 

quite well, with Graph 6 demonstrating that 

it largely follows the trends of the data, only 

seeming to have a few outliers which are 

more removed from the trendline in the top 

15 teams.  This model also shows, for the 

most part, that there is a power relationship 

between the two variables with an absolute 

maximum at the highest ranked teams and a 

clear relative maximum at the lowest ranked 

teams. We can also see that in the higher 

rankings, there is a sharp decline in shifting 

as the rankings go down, however at 

approximately 𝑥 = 6, the SpP rate begins to 

level off until 𝑥 = 26, middling around 20% 

SpP for those teams ranked 6th through 26th. We do see a mild relative maximum around 𝑥 = 22, 

immediately followed by the final rise to the second, more distinct, relative maximum at the lowest 

ranked teams. The graph also shows that while both the highest and lowest ranked teams tend to have SpP 

rates above the middling teams, the highest ranked teams are expected to shift a little over 10% more 

often than the lowest ranking teams. It also shows that it is likely only the top and bottom 5 teams who 

have SpP rates higher than middling teams, which goes against my initial hypothesis which posed that it 

would be the top and bottom 10 teams.  

Graph 6 

Graph 7 
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Findings and Reflections 

 After analysis of the models created for the relationship between the ranking of MLB teams based 

off of win/loss rate and the SpP percentage, I have reached several conclusions about the nature of the 

shift’s use in the MLB in the 2019 season and the most effective ways to model this phenomenon. First, I 

have learned much about the approaches used to create models, specifically methods involving systems of 

equations and matrices, which, while an interesting aspect of math and perhaps a good tool for small-

sample-models when you lack a calculator, they failed to accurately portray data which is significantly 

larger than the variable slots. However, when transferring to a far more accurate calculation technique 

using a digital calculator, I found that the power model of 𝑥10 was the model with the highest r value with 

a 79% correlation to the raw data. The model revealed that, similar to my hypothesis, there was a 

correlation between having a more “extreme” ranking, with the relative maximums completing their rise 

or decent from the 20% SpP rate mark within the top and bottom 5 ranked teams. This could have several 

implications – perhaps poor playing teams are using it at the wrong times due to ineffective statistical 

analysis, or they are using it to compensate for other aspects of their team. Better playing teams may 

simply being using it more effectively and with less error – either due to the superiority of their analysis 

or simply due to having better players. Meanwhile, middling teams seem to opt out and reap neither the 

reward nor the risk of shifting, as demonstrated by their placement in the middle of the rankings.  

 My data, of course, has flaws; I used a limited sample in comparison to the vast amount of data 

available for the MLB, and specifically only sourced from one season, which offers a limited idea of how 

shifting is continually being used across seasons. Too, the expansion of data points may allow for a more 

relevant model; while my data had an r value of 0.79 and therefore is strongly correlated, a more 

comprehensive data set could lead to more powerful models. Topics such as this, which explore the more 

specific cases of shifting and who uses it, could be even more expansive in looking at how this strategy 

may be changing the game, something I hope to address in the future.  
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Appendix A 

Key:  

Red: Above Average Shift per Play Percentage 

Blue: Below Average Shift Per Play Percentage 
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